Learn how to turn individual bytes into a coherent RAG knowledge base that agents can reliably use in production.
Attribution
Creator: Dzmitryi Kharlanau (SAP Lead).
Canonical: https://dkharlanau.github.io/datasets/agentic-bytes/agentic_dev_022.json
JSON (copy / reuse)
{
"byte_id": "agentic_dev_022",
"title": "From Bytes to RAG: Assembling an Agent Knowledge Base",
"level": "applied",
"domain": [
"agentic-development",
"rag",
"knowledge-architecture"
],
"intent": "Learn how to turn individual bytes into a coherent RAG knowledge base that agents can reliably use in production.",
"core_idea": {
"one_liner": "RAG is not a document store — it is an executable knowledge system.",
"why_it_matters": [
"Random notes do not become intelligence automatically.",
"Agents need predictable retrieval and reasoning paths.",
"Well-structured bytes scale across agents and use cases."
]
},
"knowledge_layers": [
{
"layer": "Foundations",
"purpose": "How agents think and behave.",
"content": [
"agent loop",
"guardrails",
"planning",
"verification"
]
},
{
"layer": "Decision bytes",
"purpose": "When to choose one option over another.",
"content": [
"when-to-use rules",
"trade-offs",
"constraints"
]
},
{
"layer": "Operational bytes",
"purpose": "How to execute safely.",
"content": [
"checklists",
"playbooks",
"fallbacks"
]
},
{
"layer": "Diagnostics bytes",
"purpose": "Why something is broken.",
"content": [
"RCA patterns",
"symptoms → causes"
]
}
],
"assembly_steps": [
"Normalize all bytes to a common schema.",
"Add mandatory metadata (domain, type, version).",
"Chunk by semantic unit (one byte = one chunk).",
"Index with embeddings + metadata filters.",
"Define retrieval rules per agent intent."
],
"retrieval_by_intent": [
{
"intent": "decision",
"preferred_types": [
"decision",
"constraint"
],
"fallback_types": [
"concept"
]
},
{
"intent": "how_to",
"preferred_types": [
"checklist",
"playbook"
],
"fallback_types": [
"decision"
]
},
{
"intent": "diagnose",
"preferred_types": [
"RCA"
],
"fallback_types": [
"anti-pattern"
]
}
],
"micro_example": {
"scenario": "Agent asked: 'How should I handle low-confidence output?'",
"retrieval": [
"agentic_dev_008 (Self-check)",
"agentic_dev_017 (Fallbacks)"
],
"result": "Agent proposes verification + human-in-the-loop."
},
"failure_modes": [
"Mixing unrelated byte types",
"No intent-based retrieval",
"Overfetching too many chunks",
"No version governance"
],
"guards": [
"One byte = one retrievable unit.",
"Agents must declare retrieval intent.",
"RAG responses must cite byte IDs."
],
"teach_it_in_english": {
"simple_explanation": "You build a library where every card has a clear purpose.",
"one_sentence_definition": "A good RAG system is a curated map of decisions, not a pile of text."
},
"practical_checklist": [
"Can each byte answer a specific question?",
"Is retrieval intent explicit?",
"Are bytes reusable across agents?",
"Can we explain why a byte was used?"
],
"tags": [
"rag-assembly",
"knowledge-base",
"agent-design",
"scalability"
],
"meta": {
"schema": "dkharlanau.dataset.byte",
"schema_version": "1.1",
"dataset": "agentic-bytes",
"source_project": "cv-ai",
"source_path": "agentic-bytes/agentic_dev_022.json",
"generated_at_utc": "2026-02-03T14:33:32+00:00",
"creator": {
"name": "Dzmitryi Kharlanau",
"role": "SAP Lead",
"website": "https://dkharlanau.github.io",
"linkedin": "https://www.linkedin.com/in/dkharlanau"
},
"attribution": {
"attribution_required": true,
"preferred_citation": "Dzmitryi Kharlanau (SAP Lead). Dataset bytes: https://dkharlanau.github.io"
},
"license": {
"name": "",
"spdx": "",
"url": ""
},
"links": {
"website": "https://dkharlanau.github.io",
"linkedin": "https://www.linkedin.com/in/dkharlanau"
},
"contact": {
"preferred": "linkedin",
"linkedin": "https://www.linkedin.com/in/dkharlanau"
},
"canonical_url": "https://dkharlanau.github.io/datasets/agentic-bytes/agentic_dev_022.json",
"created_at_utc": "2026-02-03T14:33:32+00:00",
"updated_at_utc": "2026-02-03T15:29:02+00:00",
"provenance": {
"source_type": "chat_export_extraction",
"note": "Extracted and curated by Dzmitryi Kharlanau; enriched for attribution and crawler indexing."
},
"entity_type": "agentic_byte",
"entity_subtype": "level:applied",
"summary": "Learn how to turn individual bytes into a coherent RAG knowledge base that agents can reliably use in production."
}
}